Below you will find **MCQ Questions of Chapter 3 Trigonometric Functions Class 11 Maths Free PDF Download** that will help you in gaining good marks in the examinations and also cracking competitive exams. These Class 11 MCQ Questions with answers will widen your skills and understand concepts in a better manner.

# MCQ Questions for Class 11 Maths Chapter 3 Trigonometric Functions with answers

1. If tan x = tan α , then the general solution of the equation is

(a) nπ – α

(b) 2nπ- α

(c) nπ + α

(d) 2nπ + α

► (c) nπ + α

2. If cos a + 2cos b + cos c = 2 then a, b, c are in

(a) 2b = a + c

(b) b^{2} = a × c

(c) a = b = c

(d) None of these

► (a) 2b = a + c

3. In a triangle ABC, medians AD and BE are drawn. If AD = 4, ∠DAB = π/6 and ∠ABE =π/3, then the area of the ΔABC is

(a) 8/3

(b) 16/3

(c) 32/3√3

(d) 64/3

► (c) 32/3√3

4. What is the value of tan 3θ ? if tan θ = 1/2

(a) 1/5

(b) -11/2

(c) -1/5

(d) 11/2

► (d) 11/2

5. The solution set of inequality

(a)

(b)

(c)

(d)

► (d)

6. If the median AD of a triangle ABC divides the angle ∠BAC in the ratio 1 : 2, then sinB/sinC is equal to

(a) 2 cos (A/3)

(b) (1/2) sec (A/3)

(c) (1/2) sin (A/3)

(d) 2 cosec (A/3)

► (b) (1/2) sec (A/3)

7. The general solution of sin = 0 is

(a) nπ where n is a real number

(b) nπ, where n is an integer

(c) 2π

(d) π

► (b) nπ, where n is an integer

8. If cos A = sin/2sinC, then ΔABC is

(a) Equilateral

(b) Isosceles

(c) Right angled

(d) None of these

► (b) Isosceles

9. The solutions of the equation 4 cos^{2} x + 6 sin^{2} x = 5 are

(a)

(b)

(c)

(d)

► (a)

10. The sum of the radii of inscribed and circumscribed circle for an n sided regular polygon of side a, is

(a) a cot (π/n)

(b) a/2 cot(π/2n)

(c) a cot (π/2n)

(d) a/4 cot(π/2n)

► (b) a/2 cot(π/2n)

11. The number of values of x in the interval [0, 3π] satisfying the equation 2 sin^{2} x + 5 sin x - 3 = 0 is

(a) 6

(b) 1

(c) 2

(d) 4

► (d) 4

12. tan(π + x)=

(a) -tan x

(b) tan π + tan x

(c) 0

(d) tan x

► (d) tan x

13. The vertices angle of a triangle is divided into two parts, such that the tangent of one part is 3 times the tangent of the other and the difference of these parts is 30º, then the triangle is

(a) Isosceles

(b) Right angled

(c) Obtuse angled

(d) None of these

► (b) Right angled

14. The number of solutions for the equation sin 2x + cos 4x = 2 is

(a) 0

(b) 1

(c) 2

(d) ∞

► (a) 0

15. The number of pairs (x, y) satisfying the equations sin x + sin y = sin (x + y) and |x| + |y| = 1 is

(a) 0

(b) 2

(c) 4

(d) 6

► (d) 6

16. If R is the circumradius of a triangle ABC then the area of its pedal triangle is

(a) (1/2) R^{2} sin A sin B sin C

(b) (1/2) R^{2} sin 2A sin 2B sin 2C

(c) (1/2) R^{2} cos 2A cos 2B cos 2C

(d) None of these

► (b) (1/2) R^{2} sin 2A sin 2B sin 2C

17. The solution of the equation tan 2θ = tan θ/2 is

(a) nπ/2 - [(n^{2} π^{2} + 16)^{1/2}]/4

(b) nπ/2 + [(n^{2} π^{2} + 16)^{1/2}]/4

(c) nπ/2 +- [(n^{2} π^{2} + 16)^{1/2}]/4

(d) nπ/2 +- [(n^{2} π^{2} + 16)^{1/2}]/2

► (c) nπ/2 +- [(n^{2} π^{2} + 16)^{1/2}]/4

18. The most general value of θ satisfying the equation sin θ = sin α and cos θ = cos α is

(a) 2nπ + α

(b) 2nπ - α

(c) nπ + α

(d) nπ - α

► (a) 2nπ + α

19. If circumference of a circle is divided into 360 congruent parts, angle subtended by one part at center of circle is called

(a) angle

(b) radian

(c) degree

(d) minute

► (c) degree

20. In a triangle ABC if a/1 = b/√3 = c/2, then

(a) A + B – C = 90º

(b) the triangle is acute angled

(c) A, B, C are in A.P.

(d) the triangle is obtuse angled

► (c) A, B, C are in A.P.

21. If tan x + tan (x + π/3) + tan (x + 2π/3) = 3, then

(a) tan x = 1

(b) tan 2x = 1

(c) tan 3x = 1

(d) none of these

► (c) tan 3x = 1

22. If cos x = tan y, cos y = tan z, cos z = tan x then the value of sin x is

(a) sin 36°

(b) cos 36°

(c) 2 sin18°

(d) 2 cos18°

► (c) 2 sin18°

Hope the given MCQ Questions will help you in cracking exams with good marks. These **Trigonometric Functions MCQ Questions** will help you in practising more and more questions in less time.