Below you will find **MCQ Questions of Chapter 13 Limits and Derivatives Class 11 Maths Free PDF Download** that will help you in gaining good marks in the examinations and also cracking competitive exams. These Class 11 MCQ Questions with answers will widen your skills and understand concepts in a better manner.

# MCQ Questions for Class 11 Maths Chapter 13 Limits and Derivatives with answers

1. The derivate of the function sin x + cos x is :

(a) sin x + cos x

(b) - (cos x + sin x)

(c) sin x - cos x

(d) cos x - sin x

► (d) cos x - sin x

2.

(a) log a + log b

(b) log (a/b)

(c) log a log b

(d) None of these

► (b) log (a/b)

3. (where [*] denotes greatest integer function)

(a) 0

(b) 1

(c) Does not exist

(d) sin 1

► (c) Does not exist

4.

(a) 3

(b) 2

(c) 1

(d) zero

► (b) 2

5. The function, f(x) = cos 1/x-a for x≠a and f(a) = 0, is

(a) continuous but not derivable at x = 0

(b) derivable at x = a

(c) not continuous at x = a

(d) none of these

► (c) not continuous at x = a

6.

(a) 9 p (log 4)

(b) 3 p (log 4)^{3}

(c) 12 p (log 4)^{3}

(d) 27 p (log 4)^{2}

► (b) 3 p (log 4)^{3}

7.

(a) 1/2

(b) 0

(c) 2

(d) -1

► (a) 1/2

8.

(a) 1/√2

(b) √2

(c) 1

(d) 0

► (b) √2

9. The derivate of x^{3} - 20x at x = 10 is :

(a) 280

(b) 320

(c) 250

(d) 180

► (a) 280

10.

(a) π – 22/7

(b) π

(c) 0

(d) (7x-22)/7

► (a) π – 22/7

11.

(a) 3/5

(b) 3/2

(c) 3/4

(d) 2/5

► (b) 3/2

12.

(a) 2cosx+1

(b) sin2x-1

(c) 2cosx-1

(d) sin2x

► (a) 2cosx+1

13. Consider the function f(x) = x + 10. Let us compute the value of the function f(x) for x very near to 5. Some of the points near and to the left of 5 and right to the 5 are given in the table.

(a) 15

(b) 15.0005

(c) 14.9995

(d) 10.5

► (a) 15

14.

(a) log 2/3

(b) log 2 + log 3

(c) (log 2) (log 3)

(d) None of these

► (c) (log 2) (log 3)

15.

(a) 3/2

(b) 1/4

(c) 1/24

(d) ∞

► (c) 1/24

16.

(a) log_{b} a

(b) log_{a} b

(c) log_{e} ab

(d)

► (a) log_{b} a

17. Given A = . If A - λ is a singular

(a) –1

(b) 1

(c) 0

(d) Does not exist

► (a) –1

18. Let f : R → R be a positive increasing function with

(a) 2/3

(b) 3/2

(c) 3

(d) x/2

► (d) x/2