a^{2}b^{2}x^{2} – (a^{2} + b^{2}) x + 1 = 0 ; x = 1/a^{2}, x = 1/b^{2}
By putting x = 1/a^{2} in L.H.S. of equation
L.H.S. = a^{2}b^{2} × (1/a^{2})^{2} – (a^{2} + b^{2}) × 1/a^{2} + 1
= b^{2}/a^{2} – 1 – b^{2}/a^{2} + 1 = 0 = R.H.S.
By Putting x = 1/b^{2}, in L.H.S. of equation
L.H.S. = a^{2}b^{2} × (1/b^{2})^{2 }– (a^{2} + b^{2}) × 1/b^{2} + 1
= a^{2}/b^{2} – a^{2}/b^{2} – 1 + 1 = 0 = R.H.S.
Hence, x = 1/a^{2}, 1/b^{2} are the solution of the equation.